2023

PHYSICS — HONOURS

Paper: DSE-A1.1 and DSE-A-1.2

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Paper: DSE-A1.1

(Advanced Mathematical Methods)

Full Marks: 65

Answer question nos. 1 and 2, and any four questions from the rest (Q. 3 to Q. 8).

1. Answer any five questions:

 2×5

- (a) A binary operation is defined as : $a * b = a^2 + b^2$ ($a, b \in \mathbb{R}$). Check commutativity and associativity of the operation.
- (b) Find out if W is a subspace of vector space \mathbb{R}^n , $(n \ge 3)$, where $W = \{\alpha : \alpha \in \mathbb{R}^n \text{ and } a_1 + 3a_2 = a_3\}$.
- (c) If P_1 and P_2 are two projection operators, then under what condition is $P_1 + P_2$ also a projection operator?
- (d) Show that $\nabla \times \nabla \phi = 0$ using index notation, where ϕ is a scalar field.
- (e) Show that a 2nd rank covariant symmetric tensor remains symmetric under a general coordinate transformation.
- (f) For what real values of k does the set S form a basis of \mathbb{R}^3 :

$$S = \{(k, 0, 1), (1, k+1, 1), (1, 1, 1)\}.$$

- (g) Define equivalent representations in group theory.
- 2. Answer any three questions:
 - (a) Find out if the following mappings are linear transformation (homomorphism) or not.
 - (i) $F: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by F(x, y) = (x + y, x).

(ii)
$$F: \mathbb{R}^3 \to \mathbb{R}^2$$
 is defined by $F(x, y, z) = (|x|, y + z)$.

- (b) Find $\cos \theta$, where θ is the angle between:
 - (i) u = (1, 3, -5, 4) and v = (2, -3, 4, 1) in \mathbb{R}^4 .

(ii)
$$A = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, where $\langle A | B \rangle = tr(B^T A)$.

(c) Write down the general expression for moment of inertia I_{ij} . Show that I_{ij} transforms as a 2nd rank tensor under rotation in \mathbb{R}^3 .

Please Turn Over

- (d) (i) Show that all $(n \times n)$ unitary matrices form a group under multiplication.
 - (ii) Show that all such matrices with determinant 1 form a subgroup.

3+2

(2+2)+(4+2)

- (e) Suppose $\{e, a, b\}$ forms a group under multiplication, where e is the identity element. Construct the group multiplication table. Find the inverse element of a and b.

 4+1
- 3. (a) Show that a set of orthogonal vectors is linearly independent.
 - (b) Find a unit vector orthogonal to the vectors $\alpha_1 = (0, 2, 1)$ and $\alpha_2 = (3, 1, 2)$.
 - (c) (i) A linear transformation T in \mathbb{R}^2 is defined as $T|e_1\rangle = |e_2\rangle$ and $T|e_2\rangle = -|e_1\rangle$. Write down the matrix representation of T in $\{|e_1\rangle, |e_2\rangle\}$ basis.
 - (ii) Let $|\alpha_1\rangle = |e_1\rangle + |e_2\rangle$ and $|\alpha_2\rangle = -|e_1\rangle$ be another basis. Write down the matrix representation of T relative to $\{|\alpha_1\rangle, |\alpha_2\rangle\}$ basis.
- **4.** (a) Let $V = P_2(t)$ with inner product $\langle f | g \rangle = \int_0^1 f(t)g(t)dt$.
 - (i) Find $\langle f | g \rangle$, where f(t) = t + 2 and $g(t) = t^2 3t + 4$.
 - (ii) Find the matrix A of the inner product with respect to the basis $\{1, t, t^2\}$ of V, where $A_{ij} = \langle e_i | e_j \rangle$, e_i 's are elements of V.
 - (b) Let U be the subspace of R^4 spanned by $v_1 = (1, 1, 1, 1)$, $v_2 = (1, -1, 2, 2)$ and $v_3 = (1, 2, -3, -4)$.
 - (i) Apply Gram-Schmidt algorithm to find an orthogonal and orthonormal basis for U.
 - (ii) Find the projection of v = (1, 2, -3, 4) onto U.
- 5. (a) Derive the metric tensor for 3D spherical polar coordinate.
 - (b) Write the transformation rule for mixed tensor of rank two.
 - (c) Using the expressions of Lorentz transformation, obtain the Lorentz transformation matrix. At which limit, the Lorentz transformation becomes similar to Galilean transformation? 3+2+(4+1)
- **6.** Maxwell's equations in covariant form is represented as $\partial_{\mu}F^{\mu\nu} = j^{\nu}$.
 - (a) Show that $\partial_{\nu} j^{\nu} = 0$ using antisymmetry of $F^{\mu\nu}$.
 - (b) Given $F^{0i}=E^i$, (i=1,2,3) and $F^{ij}=\epsilon^{ijk}B_k$, construct the $F^{\mu\nu}$ matrix in E^i 's and B^j 's. From inhomogeneous Maxwell's equations $\partial_{\mu}F^{\mu\nu}=j^{\nu}$, show that its zeroth component yields $\nabla .\vec{E}=\frac{\rho}{\epsilon_0}$.
 - (c) Construct $F_{\mu\nu}$ from $F^{\mu\nu}$. (use the signature $\{1,-1,-1,-1\}$) and calculate $F_{\mu\nu}F^{\mu\nu}$.